Rasch analyses of data collected in 17 countries

- A technical report to support decision-making within the M-POHL consortium

International Population Health Literacy Survey 2019-2021 (HLS₁₉)

13 October 2021

© The Norwegian NST of HLS₁₉

Øystein Guttersrud, Christopher Le, Kjell Sverre Pettersen, Hanne Søberg Finbråten

Content

INTRODUCTION	2
BACKGROUND	2
Tests of fit	2
Sample size for the item calibration and data-model fit stage	2
Unidimensional polytomous Rasch models and IRT models	3
Why we prefer Rasch type models	3
Model comparison	3
Software	4
Mode – method of data collection	4
ANALYSES	4
Using data for quality assurance	4
Estimating individual health literacy proficiency estimates	9
Estimating progression/ change over time by using anchors or item linking	10
Using HLS ₁₉ data to improve future assessments	11
Using HLS ₁₉ data to inform health policy	11
REFERENCES	16
APPENDIX	18

INTRODUCTION

The National Study Team (NST) of HLS₁₉ for Norway offered to support the analyses of HLS₁₉ data by providing statistical analyses of assessment scales to test data-model fit by using Item-Response Theory procedures and Rasch modelling. **The Norwegian NST provides analyses of HLS₁₉-Q12 and the optional scales measuring navigation, communication and digital health literacy**. We have also added analyses of the 4-item **vaccination literacy** measure. As few countries applied HLS₁₉-Q47, and the international report will emphasize HLS₁₉-Q12, analyses of HLS₁₉-Q16 and the domain-specific subscales for HC, HP and DP are not reported.

BACKGROUND

In this background section, we shortly introduce concepts, ideas and statistical models applied in the Analyses chapter.

Tests of fit

For a dichotomously scored multiple choice item, a basic test of fit is the difference between the observed proportion 'correct' and the Rasch dichotomous model (Rasch, 1960) predicted proportion or residual. Based on test score sums, we group test takers into *G* number of groups or 'class intervals'.

A **z-fit residual** is the standardised difference between the observed and model predicted or expected number 'correct' in the class intervals (z-fit < -3.0 may indicate an over-discriminating item, and z-fit > 3.0 may indicate an under-discriminating item). To get a fit index of an item as a whole, these residuals are squared and added up. In the software package RUMM2030plus (Andrich & Sheridan, 2019) this gives an approximate **chi-square** distribution on df = G-1 degrees of freedom (and the overall chi-square based test of fit for J items has $df = J \times (G-1)$. The 'chi-square **probability'** reports the 'probability of observing the estimated chi-square value' given good data-model fit (p > .05). Repeating the significance tests increase the probability of observing significant values or 'misfit items', and to counteract this effect we applied Bonferroni adjusted chi-square probabilities: .05/J = .004 for J = 12 items (Bland & Altman, 1995).

The **infit** fit index is an information- weighted or variance-weighted fit residual with expected value equal to 1 (infit < 1 indicates an over-discriminating or over-fitting item, and infit > 1 indicates an under-discriminating item or under-fitting item). For high stakes tests, such as exams, .8 > infit < 1.2. For HLS₁₉ measuring at the population level we may view .7 > infit < 1.3 as sufficient. Infit is 'inlier sensitive', and we may say it put more emphasis on 'targeted observations' and pay less attention to 'extreme observations'. Outfit, which we not reported, is 'outlier sensitive' and pay more attention to 'extreme observations'

Each HLS₁₉ measurement scale consists of a set of 'rating scale items' with **four** ordered response categories ('very difficult' – 'very easy'). Normally, we score these items 0–3 points, and we expect the scores to be ordered. We may 'generalize' the idea of fit indexes to these ordered polytomous items.

Sample size for the item calibration and data-model fit stage

In general, the greater the sample size, the more powerful the test of fit that the responses do not fit the model. The largest sample size in HLS₁₉ is more than 5500 persons, and these data will most likely not fit any Rasch-type model.

With k = 4 response categories there are k-1 = 3 thresholds to be estimated. A rule of thumb based on 'substantial experience and simulation' is that the sample for data-model fit analyses should increase

as the number of item thresholds increase, and a reasonable ratio is **between 20 and 30 persons** for each threshold (Andrich, 2011, p. 7). For example, for a scale consisting of J = 12 items using a 4-point rating scale, we may therefore reduce the sample size / select a 'random sample' between 720 respondents (12 items x 3 thresholds x 20 persons = 720 respondents) and 1080 respondents (12 x 3 x 30 = 1080). We did this for each HLS_{19} participating country. However, a smaller sample size may give meaningful results and identify anomalous items.

Unidimensional polytomous Rasch models and IRT models

Masters (1982) formulated the polytomous Rasch partial credit model (**PCM**) by using the Rasch dichotomous model, and we may view the dichotomous Rasch model as a special case of PCM in which the number of categories is two. The rating scale parameterisation of the PCM (RSM; Andrich, 1978) constrains the Rasch-Andrich thresholds or 'step difficulties' to be equidistant across the items. We may consider using the RSM when item responses are elicited by a common set of behavioural anchors, such as 'strongly disagree' – 'strongly agree' or 'very difficult' – 'very easy' as in HLS₁₉-Q12, but the PCM is more flexible.

Following Masters, Muraki (1992) constructed the generalized PCM (**GPCM**) by using the Birnbaum dichotomous two-parameter logistic model (Birnbaum, 1968). Mathematically, PCM therefore follows from GPCM by fixing the item discrimination parameters a_i to 1 (or $A_i = a_iD = 1$, where D equals 1.0 (pure logistic model) or 1.7 (logistic approximation)). We may say that GPCM relaxes the Rasch assumption of equal discrimination across items.

PCM and GPCM are 'divide-by-total-models' (Thissen & Steinberg, 1986) or 'adjacent categories models' estimating Rasch-Andrich thresholds. We did not consider any 'difference models' (Thissen & Steinberg, 1986) with a Thurstonian cumulative boundary measurement approach, such as the Samejima model (Samejima, 1969).

Why we prefer Rasch type models

Specific objectivity – the separability of the item location b_i and person location θ_j parameters, which implies sufficiency – the existence of the minimal sufficient statistics of the response data matrix, are distinct mathematical properties of the family of Rasch models (Wright & Stone, 1979, p. 20). When data fit Rasch models, we can defend summing up the raw scores. IRT models, which use the data matrix to estimate item discrimination parameters a_i do not share these properties, and we would need to use weighted raw score (weighted with the discrimination parameter). However, this procedure does not meet the sufficiency assumption. As opposed to IRT models, Rasch models do not allow item characteristic curves to intersect and therefore meet the requirement of invariance.

The features of Rasch models permit a specialized parameter estimation procedure – conditional maximum likelihood estimation, which offers unbiased *item* estimates (Muraki, 1992, p. 160). Weighted maximum likelihood produces unbiased *person* estimates (Warm, 1989).

Model comparison

The difference in deviance or -2LL from two hierarchically, nested models is distributed as a chi-square with *df* equal to the difference in the number of *df* between the 'full' and the 'reduced' model (de Ayala, 2009, p. 140). We may therefore compare the more complex or less constrained GPCM to the less complex or more constrained PCM by using likelihood ratio test (LRT), where PCM is 'nested within' GPCM. To compare GPCM to PCM by using LRT we must estimate the models on the identical sample. We may also calculate the relative reduction in deviance from PCM to GPCM (de Ayala, 2009, p. 141), quite similar to comparing R squared for nested regression models.

If data do not sufficiently fit the Rasch PCM, we may choose the GPCM. However, then a respondent's score sum is not the simple raw score but the sum of weighted scores.

Software

The PCM was fit using the software RUMM2030plus (Andrich & Sheridan, 2019) and the software Conquest5 (Adams et al., 2020). We fitted and compared the GPCM to PCM by using the software Xcalibre 4.2.2 (Guyer & Thompson, 2014).

Mode – method of data collection

In HLS₁₉, participating countries selected between different methods of data collection or modes

- computer-assisted telephone interviewing (CATI) a telephone surveying technique in which the interviewer follows a script provided by a software application
- computer-assisted web interviewing (CAWI) an internet surveying technique in which the 'interviewee' follows a script provided in a website
- computer-assisted personal interviewing (CAPI) a personal interview technique in which the respondent or interviewer uses an electronic device to fill the answers into the questionnaire
- paper-assisted personal interviewing (PAPI) or 'paper and pencil interviewing' a personal
 interview where the pollster has a printed-out questionnaire, reads the question to the
 respondent and fills the answers into the questionnaire

ANALYSES

In this section, we emphasize the HLS_{19} -Q12 but all ideas and comments apply to all scales (digital, communication and navigation health literacy). If not explicitly stated otherwise, all analyses refer to the PCM with raw data scored 0–3 points reflecting the 4-point rating scale 'very difficult' – 'very easy'.

Using data for quality assurance


Overall data-model fit: Testing data up against the PCM for country wise samples with 20 persons per threshold, Table A1 displays good overall data-model fit for HLS_{19} -Q12 in Austria (CATI), Denmark, Germany, Israel (CAWI), Norway, Slovakia and Switzerland. This conclusion is based on $\chi^2(df = 84, n = 720)$, p > .05. Table A1 displays sufficient overall data-model fit for HLS_{19} -Q12 in Austria (CAWI), Belgium, Czechia (CAWI and CATI) and Ireland. This conclusion is based on $\chi^2(df = 84, n = 720)$, p > .01. Reducing sample size down to n = 360 or 10 persons per threshold, France, Hungary, Russia and Slovenia display acceptable overall data-model fit. Owing to the relatively large overall χ^2 , the Portuguese data display acceptable overall data-model fit for n = 360, that is, $\chi^2(df = 84, n = 360)$, p > .01.

[Fitting the more complex model GPCM to the Portuguese data, results in a relative reduction in deviance -2LL of (12892-12458)/12892 = .034 (see D = -2LL in Table A1). The interpretation is that the GPCM results in an improvement of fit of 3.4% over the PCM (see the column RelRed or 'relative reduction' in Table A1). The difference in deviance between PCM and GPCM is 12892-12458 = 434 and change in deviance is asymptotically chi-square distributed with df equal to the difference in estimated parameters. Here df = 12 as the GPCM estimates one discrimination parameter for each of 12 items. As the PCM is nested within GPCM, we can test the size of the change in deviance by using likelihood ratio test: $\chi^2(df$ = 12) = 434, p << .01. The test indicates that the data fit significantly better to the GPCM than the PCM. In Table A1 we have reported results for GPCM only for the five countries with poorest fit to PCM]. We put this section in square brackets to specify that we discuss the GPCM only here.

Individual item data-model fit: Good overall data-model fit usually implies good data-model fit for single items. Using the German data as example, we see from Table A2 that all HLS_{19} -Q12 items sufficiently fit the PCM. Item 37 'to understand advice concerning your health from family or friends' under-discriminates somewhat (z-fit > 3.0 and significant chi-square, but the inlier sensitive infit < 1.2). In Portugal, the HLS_{19} -Q12 items tend to over-discriminate (Table A2). If we leave the Rasch-paradigm and steps into the IRT-paradigm, we would interpret the Portuguese data as quite 'strong'. We saw that the IRT-model GPCM, which models item discrimination, improved data-model fit for the Portuguese data.

Ordering of response categories: Estimating Rasch-Andrich thresholds, we can evaluate whether thresholds are ordered. Ordering of thresholds are easiest understood by looking at the 'category probability curves' for HLS₁₉-Q12 item 16 in Figure A. The red curve termed '2' indicates the probability of ticking off in category 2 'difficult' as a function of respondents' standing on the latent trait 'health literacy' along the x-axis. The right diagram shows slightly reversed thresholds for the Irish data and indicates that category 2 not is the most likely for any health literacy level. HLS₁₉-Q12 item 16 displays unordered thresholds in the Belgian, Irish, and Norwegian data (not significant in the Norwegian data). For example, 'your pharmacist' does not apply to the Norwegian context. In the Austrian data, we observed *in*significant unordered thresholds for HLS₁₉-Q12 item 4. To sum up, only HLS₁₉-Q12 item 16 displayed unordered thresholds in as few as two countries – a remarkably good result. Therefore, there is **no need to rescore**, or more extremely, **dichotomize** the HLS₁₉-Q12 items. Dichotomising the items will lead to excessive loss of information, reduced variance / lower reliability and significantly less variance in health literacy to explain by regression models.

The idea behind the suggestion of **completely removing** the phrases anchored with the **two middle categories**, which ended up in removing the word 'fairly', was to reduce the chance of observing unordered thresholds. To decide whether removing 'fairly' actually was an effective strategy, we need to re-analyse the HLS-EU data and compare the occurrences of unordered thresholds in the HLS-EU datasets to the HLS₁₉ datasets.

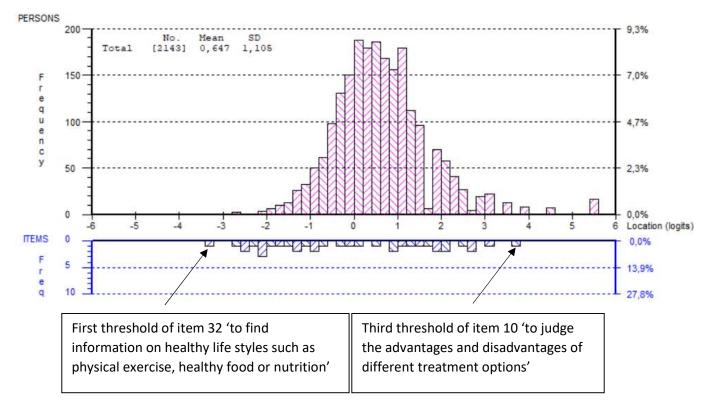


Figure A. Visualizing ordering of thresholds for HLS₁₉-Q12 item 16 'to act on advice from your doctor or pharmacist' for the German (left) and the Irish (right) data.

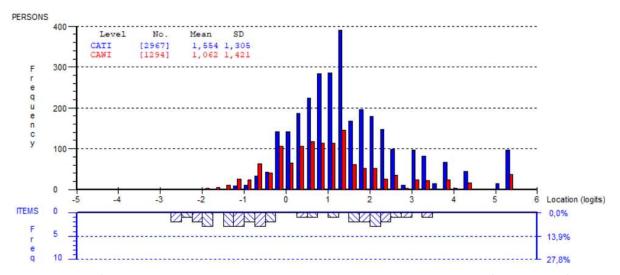

<u>Targeting and mean health literacy proficiency</u>: After calibrating the items, we estimated the person locations or person proficiency estimates by using Warms' weighted maximum likelihood estimation (Warm, 1989). Table A1 reports the mean Rasch-based person estimates in logits. The overall 'difficulty' of the HLS_{19} -Q12 items fit well to the overall health literacy level of the Belgian (mean = .62) and German (mean = .65) samples when using CAWI and PAPI, respectively. Figure B1 visualizes the concept of targeting. In, for example, Austria the HLS_{19} -Q12 scale is somewhat 'out of target'. We may compare measuring health literacy in Austria by using HLS_{19} -Q12 to a mathematics test that was too easy for students.

Figure B2 displays the distributions of the two comparable Austrian samples (CATI and CAWI) when the samples are merged to obtain a common 'point of reference' for the HLS₁₉-Q12 measurement scale. In line with literature (Christian et al., 2008; Lugtig et al., 2011; Ye et al., 2011), CATI results in significantly higher mean health literacy level than CAWI do. Czechia / Czech Republic, Israel, Italy and Switzerland also collected data using both CAWI (large sample) and CATI (smaller sample), but the CATI and CAWI samples are *not* directly comparable within countries. Compared to the respective CAWI sample, the Czech and Italian CATI samples had an overweight of females and older people. In Italy, the HLS₁₉-Q12 CATI data displayed somewhat poor overall data-model fit. Owing to small sample size, we did not estimate the Swiss CATI sample.

Germany changed from CAPI in HLS-EU to PAPI in HLS₁₉, but we have no available data to assess how this influenced the German results. Slovenia and Bulgaria collected data using both CAPI and CAWI, and the Slovenian and Bulgarian data displayed somewhat poor overall data-model fit. The Slovenian CAPI sample had an overweight of older people with low education. The Bulgarian CAPI and CAWI samples were somewhat small with few old people and overweight of females.

Figure B1. Visualizing the concept of targeting – how well the distribution of item thresholds (histogram below the x-axis) fits the distribution of person proficiency estimates (histogram above the x-axis) in the German HLS_{19} -Q12 data.

Figure B2. This figure is equivalent to Figure B1 but visualizes the distributions of person proficiency estimates (histograms above the x-axis) for CATI (blue) and CAWI (red) in the Austrian HLS₁₉-Q12 data, when the CATI and CAW data sets are merged. Austria collected two large and comparable samples. CATI results in better data-model fit (Table A1) and significantly higher scores on the outcome variable health literacy. The distribution of item thresholds (histogram below the x-axis) could have been better targeted to the distributions of person proficiency estimates (histograms above the x-axis).

<u>Dimensionality</u>: The HLS₁₉-Q12 items measure three health domains (health care, health promotion and disease prevention), and four cognitive domains (find, appraise, understand and apply). These different domains or aspects capture the complexity of the construct and increase the validity of the HLS₁₉-Q12 scale, but they inevitably bring multidimensionality into the measure.

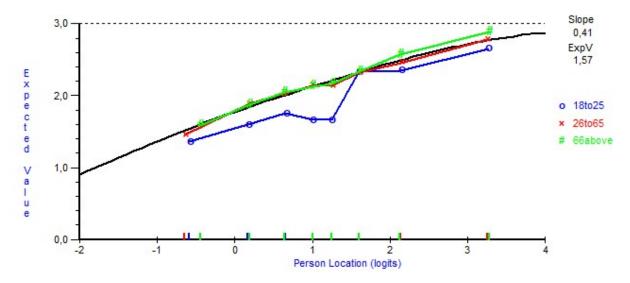
There are several approaches to testing for unidimensionality. Using the software Conquest, we can estimate and, by likelihood ratio test, compare a multidimensional to the nested unidimensional model. We may also form subtests and observe drops in inflated reliability indices. A quick check is to form two subsets of items and estimate the proportion of respondents with significantly different person estimates on the two subsets. If the portion of significant dependent t-tests > .05 (theoretical subscales) or > .10 (empirical subscales based on principal component analysis (PCA) of Rasch residuals), the scale is not strictly unidimensional. Using the latter method with empirical subscales, we found no systematic subsets of items across countries. Table A1 shows that the percentage significant t-tests is below 10 % for each country (the column Dim (%)), varying between approximately 10 % in Denmark and 5.5 % in Norway. Therefore, HLS₁₉-Q12 seems sufficiently unidimensional.

Reliability: Scoring the 12 items using 4-point rating scale 0–3 points, each respondent has a sum score 0–36 points. We therefore expect a rather broad spread or separation of persons and, consequently, high reliability indexes (Person Separation Index (**PSI**) and **Cronbach's** α). We estimated PSI on original datasets with missing values, while Cronbach's α was estimated using only respondents with complete HLS₁₉-Q12 data. As Belgium submitted a complete dataset, PSI and Cronbach's α are very similar. Table A1 display sufficiently high reliability for all countries, on the assumption of unidimensional data.

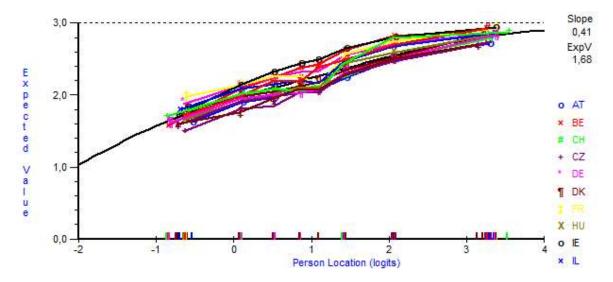
<u>Response dependency</u>: If all 12 items were identical, the respondents would be stratified into four groups (or three groups if no one used the 'very difficult' category). These groups of respondents would be strongly separated based on significantly different score sums, and reliability indices would be close to 1. We check for 'too similar' or dependent items by estimating correlations between item Rasch model residuals. We used residual correlation > .3 as a target value for response dependency between items. Not reported here, but we found no evidence of response dependency or 'too similar' items

within the HLS₁₉-Q12scale. Another way to put it is that no pair of items shared variance over and beyond the latent trait 'health literacy'.

<u>Differential item functioning (DIF)</u>: To examine for DIF, we used two-way analysis of variance of standardised residuals (Andrich & Marais, 2019, p. 201). For DIF analyses, we categorised person factors as shown in Table 1.


Table 1. Person factor levels used for analysis of differential item functioning (DIF).

Person factor	Levels (categories)						
Person factor	1	2	3				
gender (CDET1)	male	female					
age (CDET2)							
- dichotomised	18 to 45 years	46 years and older					
- agecat1	18 to 25 years	26 to 65 years	66 years and older				
- agecat2	18 to 45 years	46 to 75 years	76 years and older				
education (CDET6)	ISCED 0-3	ISCED 4–8					
employment (CDET7)	employed	unemployed or retired					
pay bills (CDET11)	easy	difficult					
social level (CDET12)	level 1–4	level 5–10					
general health (CHSTAT1)	good or fair	bad					


Several items displayed DIF when sample size was reduced to 1080 (see Table A2 in appendix), and for some items DIF was still evident when reducing the sample size to 720. One example is item 23 'understand information about recommended health screenings or examinations', which displayed DIF for 'employment' in a few countries (BE, FR, SI (CAWI)) and for respondent age in several countries (BE, CH, DK, FR, SI (CAWI and CAPI)). Using the Danish data, Figure C visualizes how item 23 displays DIF for respondent age (variable CDET2). The interpretation is that, despite same level of health literacy, older respondents tend to respond more often '(very) easy' on item 23 than younger respondents do. Young people may be less familiar with health screenings and have poorer understanding of information about these examinations. Unemployed or retired people, who possibly have health problems and therefore may be more exposed to this type of information, more often respond '(very) easy' on item 23 than employed respondents.

We observed several items displaying significant DIF for respondent age (items [country]: 32 [PT], 37 [CH],) 42 [DK]) and employment status (31 [BE], 32 [HU], 42 [DK], 37 [CH]) even when sample size was adjusted to 720. In addition, in the Belgian data, item 37 'to understand advice concerning your health from family or friends' displayed DIF for the factors 'pay bills' and 'health status'. In the Portuguese data item 10 'to judge the advantages and disadvantages of different treatment options 'displayed DIF for 'social levels' and in the Slovenian data item 31 'to decide how you can protect yourself from illness using information from the mass media' displayed DIF for 'educational background'. Conditional on sample size 1080, we did not observe items displaying significant DIF in the Austrian, Russian or Slovakian samples.

Figure D shows an example on an item displaying DIF for country of residence, and this is a significant challenge in the HLS₁₉ data. Further analyses will indicate whether we may compare results across smaller groups of countries, like German-speaking countries.

Figure C. Visualizing the concept of DIF – how people in Denmark with the same health literacy proficiency have a different probability of giving a certain response to HLS₁₉-Q12 item 23 depending on their age (person factor age (CDET2) with levels 18–25 years, 26–65 years and 66 years and older).

Figure D. Visualizing the concept of DIF – how people with the same health literacy proficiency have a different probability of giving a certain response to HLS₁₉-Q12 item 16 depending on country of residence.

<u>Conclusion</u>: To conclude, despite some deviancy the overall picture is that **the country wise HLS**₁₉**-Q12 data seem to have acceptable quality**. Having said that, the analysis provided is an excellent source for initiatives to revise the HLS₁₉-Q12 scale. Items displaying DIF between countries are a challenge for comparative analyses. We specifically mention that the theoretical subscales of the navigation health literacy scale seem to bring some multidimensionality into the measure.

Estimating individual health literacy proficiency estimates

Using Rasch modelling with FIML (full information maximum likelihood estimation), which is not an imputation method; we can easily estimate a score for a respondent with missing data. Owing to missing data or 'lack of information', respondents with missing data may have larger standard error of estimate. The same is true for respondents with very high or low health literacy scores, as there are few 'hard and easy' items providing information at low and high locations.

The software output in Figure B displays that we estimated a Rasch-based health literacy score for each of 2143 German respondents. Therefore, there is no need to provide a 'procedure for constructing scores' as Rasch modelling with FIML elegantly solves the challenge. Subsequently, there is no need to 'change the procedure for constructing the scores' as a 'consequence of the change of wording of the response categories'. Above we indicated that there is no need to rescore — at least not dichotomize — any HLS₁₉-Q12 items as the response categories worked very well.

As opposed to any form of raw score, the Rasch-based HLS_{19} -Q12 health literacy scores have 'interval scale property' and an underlying continuous latent trait. These estimates meet the regression assumption of a continuous dependent variable; and the interval property makes the regression parameter estimates valid for all health literacy levels. The standard errors associated with the estimates are conceptualized as a component of the regression residual e_i , where $Y = Y_hat + e_i$. If we use Rasch-based estimates for independent variables in regression, the error of measurement tends to attenuate the parameter estimate. Structural equation modelling solves this problem.

Estimating progression/change over time by using anchors or item linking

We agree that it is difficult to demonstrate how the **reworded questions** (items revised between HLS-EU and HLS₁₉) have affected the data, but that is not a relevant discussion. There are different approaches to estimating change in overall health literacy from HLS-EU to HLS₁₉, but we must treat the revised items as 'new' items.

Anchoring: One approach is to use the identical items (items not revised between HLS-EU and HLS₁₉) as 'anchors'. In the anchored item analysis, we import item parameters (the item principal components) for some or all items 'in a scale' from a previous analysis (e.g., the HLS-EU study) to estimate person abilities for the HLS₁₉ cohort. Then, we estimate person abilities for the HLS₁₉ cohort in a prior frame of reference (the HLS-EU cohort).

Linking: Another approach is to merge the country wise HLS-EU and HLS₁₉ datasets, link the few identical items, and set HLS-EU specific items to 'systematic missing' for the HLS₁₉ cohort and vice versa. Then, the data set involves blocks of systematically missing which are the result of the test design rather than respondents' 'missing' responses. Using FIML, like pairwise maximum likelihood algorithm, the calculation of the sufficient statistics for item parameters allows for missing data.

Then, we can estimate the mean health literacy proficiency for the EU-HLS respondents and the mean health literacy proficiency for the HLS₁₉ respondents based on a common origin or 'point of zero'. By comparing these estimates, we have measured change. The latter method is valid as the EU-HLS respondents and HLS₁₉ respondents are different/independent individuals (not a pre and post design).

If any countries applied HLS-EU-Q16 and later applied the HLS_{19} -Q12, they may estimate change by linking these two scales by item q4 – the one common item that we not revised between HLS-EU and HLS_{19} .

A relevant discussion is change of 'mode' from HLS-EU to HLS₁₉. Eight countries took part in the 2011 HLS-EU study (Austria, Bulgaria, Germany, Greece, Ireland, the Netherlands, Poland and Spain), and of these only three countries (Austria, Germany and Ireland) participated in the HLS₁₉ study. As these three countries changed mode or data collection method from the HLS-EU to HLS₁₉ (Austria changed from CAPI to CATI, Germany from CAPI to PAPI, Ireland from PAPI to CAWI) measuring change is practically impossible. Further, some items were revised or reworded, and the word 'fairly' was removed from the two central response categories. Possible effects of all these changes (mode, rewording and changing the central response categories) cannot be isolated in the available data.

However, other countries may have repeatedly collected data over time and can measure change. For example, Norway collected data using CATI for both the HLS-EU-Q47 and the HLS₁₉-Q47 questionnaires. Based on field trials of the HLS-EU-Q47, where several items displayed reversed thresholds, Norway modified the middle response categories in both questionnaires (HLS-EU-Q47 and HLS₁₉-Q47). Hence, these data sets may be linked using identical items (items not revised between HLS-EU and HLS₁₉).

Using HLS₁₉ data to improve future assessments

<u>At country level</u>: For Norway, Table A1 displays good overall fit for HLS₁₉-Q12, and Table A2 in the appendix displays reasonably good fit at the single item level. However, item 23 'to understand information about recommended health screenings or examinations' discriminates quite strongly between respondents with low versus high health literacy (large negative z-fit residual, large chisquare value and infit below .90). Over-fitting items are, of course, more a theoretical than an empirical problem. In this case, we may explain the deviation by a national adaptation of item 23. Based on this information, the Norwegian group should discuss whether their national adaptation of item 23 could have caused the strong discrimination. As mentioned, item 23 displays DIF in several countries. DIF may be a significant challenge, especially in regression models where we use background variables to explain variance in health literacy. All HLS₁₉ participating countries may use the single item information provided in the appendix as a basis for item revision.

<u>At group level</u>: A greater concern in the Norwegian data is item 31 'to decide how you can protect yourself from illness using information from the mass media', which discriminates somewhat poorly and tend to under-fit the PCM (large positive z-fit residual, large chi-square and infit approaching 1.2). Item 31 discriminates somewhat poorly also in Austria, Belgium, Switzerland, Hungary, Ireland and Slovenia – half of the participating countries. Thus, it seems to be a systematic problem with item 31 across countries. M-POHL may therefore discuss whether item 30 should replace item 31 in the Q12 short version. Item 30 is included in the original Q12 short version (Finbråten et al., 2018).

M-POHL should discuss why certain items display poor measurement properties across countries/health systems and use this information in item revision. **M-POHL should also discuss** item selection — whether we may benefit from replacing specific HLS₁₉-Q12 items with suitable HLS₁₉-Q47 items.

Using HLS₁₉ data to inform health policy

We have evidence that different modes, as CATI and CAWI, influence the mean health literacy measured by HLS₁₉-Q12 (see above). It follows that **we cannot define one cut-off value for 'inadequate' health literacy that is valid across different modes**. For example, in Israel and Czechia the estimated proportion with 'inadequate' health literacy in the CATI data may be different from /lower than in the CAWI data. Also, whether a certain health literacy level is 'sufficient' depend on contextual factors, like the functioning and structure of the health service in a specific country. Further, different countries have different political aims and goals, and the HLS₁₉ results should align with and inform that policy. Then, policy makers will view HLS₁₉ as relevant and central to health policy development in their 'local' or 'social' context.

A simple and straightforward method to estimate cut-off values for 'significantly different health literacy scores' for a specific country, is to use the Rasch-based estimates with pooled standard error. For example, if the sum score 20 points is associated with the proficiency estimate -2.33 logits (SE = 0.49) and the sum score 27 points is associated with the proficiency estimate -0.75 logits (SE = 0.48), we can conclude that -0.75 is outside the confidence interval -2.33+ $(2*SQRT(0.49^2+0.48^2))$ = -0.96. Therefore, the sum score 27 points is significantly different from the sum score 20 points (while the

sum score 26 is not). Repeating the procedure, we can estimate a set of cut-off values, and we can estimate the percentage of respondents at each 'level'.

When the uncentralized item thresholds are ordered, we can ascribe the threshold associated with the response 'easy' for each item to specific points along the latent trait. Groupings of item content at and slightly above each cut-off point define bands or levels of achievement, and these levels of achievement may refer to knowledge and skills necessary to realise specific local health policy goals. We may use the ordered uncentralized thresholds to build up an achievement scale as their order and location on the scale reflect their increasing 'difficulty' (e.g. Van Wyke & Andrich, 2006).

In Norway, we applied this method. A main result was that knowledge and skills necessary to realise the political aim referred to as 'the patient's health service' was associated with health literacy at level 2. As 33 % scored below level 2, we concluded that one third of the population may lack the knowledge and skills necessary to meet the expectations of and realise this central political aim in Norway. Hence, the HLS₁₉ survey explicitly informed Norwegian health policy.

Table B1, Table C1a, Table C1b and Table D1 provide similar information as Table A1 but for other HLS₁₉ scales. Table A2, Table B2, Table C2a, Table C2b and Table D2 in the appendix provide single item statistics for the different HLS₁₉ scales.

Table A1. HLS₁₉-Q12 overall analyses. If not stated otherwise, all analyses refer to the PCM

	2		, , , , , , , , , , , , , , , , , , ,	Relia	ability			D = -2 <i>LL</i>	
Country	χ², p	Mode	Mean ^g	α	PSI	Dim (%)	PCM	GPCM	RelRed (%)
Austria	72.1, .82	CATI	1.55 ^h	.84	.82	7.5			
Austria	115.5, .01*	CAWI	1.06 ^h	.86	.85	10.1			
Belgium	109.4, .03*	CAWI	.62	.88	.88	7.7			
Bulgaria ^{e2}	141.2, .00**	САРІ	.70	.81	.79	6.7			
Bulgaria ^{e2}	238.2, .00**	CAWI	.90	.85	.83	11.0			
Czechia ^b	110.3, .03*	CATI	1.12 ^h	.82	.79	7.0			
Czechia	112.8, .02*	CAWI	.83 ^h	.84	.84	6.4			
Denmark	79.9, .61	CAWI	1.38	.86	.85	10.0			
France ^f	176.1, .00**	CAWI	1.32	.89	.88	6.5	35283	34765	1.5
Germany	76.4, .71	PAPI	.65	.80	.81	8.7			
Hungary ^f	137.0, .00**	CATI	1.21	.84	.83	9.3	20657	20524	.6
Ireland	113.5, .02*	CAWI	1.22	.82	.79	5.9			
Israel ^c	111.2, .03*	CATI	1.42 ^h		.85				
Israel	98.5, .13	CAWI	.95 ^h	.87	.87	8.1			
Italy	159.7, .00**	CATI	.71	.84	.81	9.1			
Italy	66.2, .92	CAWI	.81	.90	.88	8.0			
Norway	91.5, .27	CATI	1.29	.84	.83	5.5			
Portugal ^f	225.8, .00**	CATI	1.26	.90	.82	5.8	12892	12458	3.4
Russia ^f	135.3, .00**	PAPI	1.11	.90	.87	7.0	81446	79763	2.1
Slovakia	81.2, .56	CAPI	.88	.88	.88	9.1			
Slovenia ^f	145.2, .00**	CAPI	1,67	.91	.88	7.3			_
Slovenia ^f	201.6, .00**	CAWI	1.85	.86	.84	6.9	25323	24797	2.1
Sloveniad	-	PAPI	-	-	-				
Switzerland ^{e1}	-	CATI	-	-	-				
Switzerland	84.4, .47	CAWI	1.18	.84	.84	8.7			

Note. PCM = Rasch partial credit model, GPCM = generalized PCM, RelRed = relative reduction in -2*LL* from PCM to GPCM, α = Cronbach's alpha, PSI = Person Separation Index, *p < .05, **p < .01. The chi-square test for overall data-model fit using PCM was based on G = 8 groups of respondents (df = 7 for a single item and df = 84 for 12 items) and a reduced sample size with 20 persons for each of 36 thresholds n = 720: $\chi^2(df$ = 84, n = 720), where number of thresholds = 12 x (4-1) = 36.

^aAustria collected data using different modes (CATI and CAWI) in two comparable samples

 $^{^{\}rm e2}$ Bulgaria applied CAPI (n = 402) and CAWI (n = 463) in small samples

 $^{^{\}rm b}$ Czechia applied CATI in a medium sample n=532 with 8 extreme scorers

clsrael applied CATI in a small sample n = 311 with 25 extreme scorers

^dSlovenia applied PAPI in a minor sample n = 12, no analysis reported

 $^{^{}e1}$ Switzerland applied CATI in a minor sample n = 192, no analysis reported

fFrance, Hungary, Portugal, Russia and Slovenia (CAWI and CAPI) have acceptable overall fit to PCM when sample size is reduced to 10 persons per threshold (n = 360) for chi-square test. The GPCM was estimated for each of these five countries.

8Mean Rasch-based health literacy proficiency (using the PCM with 4-point raw score)

^hMean Rasch-based score when data for the two modes are merged to form a common point of zero. When analysed separately, the mean is 1.06 and 1.57 (Austria), .80 and 1.23 (Czechia), and .87 and 1.81 (Israel) for CAWI and CATI, respectively. Only the two Austrian samples are comparable.

Table B1. HLS₁₉-DIGI overall analyses

Carrature		BA a d a	DA	Relia	bility	Direc (0/)
Country	χ², p	Mode	Mean	α	PSI	Dim (%)
Austria	18.3, .98	CATI	1.20	.89	.86	8.5
Austria	39.2, .18	CAWI	.65	.89	.87	8.6
Belgium	56.1, .01*	CAWI	.14	.91	.89	10.6
Czechia	55.0, .01*	CAWI	.28	.89	.87	7.6
Denmark	63.9, .00**	CAWI	.94	.92	.90	8.3
Germany	16.5, .99	PAPI	54	.91	.89	6.2
Hungary	80.3, 00**	CATI	.72	.84	.82	11.5
Ireland	38.8, .19	CAWI	.64	.86	.83	5.5
Israel	97.0, .00**	CAWI	.57	.88	.87	8.5
Norway	40.1, .15	CATI	1.70	.87	.83	7.2
Portugal	106.1, 00**	CATI	1.03	.89	.83	8.0
Switzerland	46.5, .05	CAWI	0.20	.91	.90	13.6

^{*}p < .05, **p < .01. The chi-square test for overall data-model fit using PCM was based on a reduced sample size with 20 persons for each of 24 thresholds, n = 480. Reducing sample size down to n = 240 or 10 persons per threshold, also data from Denmark, Hungary, Israel and Portugal display acceptable overall data-model fit.

Table C1a. HLS₁₉-COM-Q11 overall analyses

Country	2	Mada	Mann	Relia	bility	Dim (%)
Country	χ², ρ	Mode	Mean	α	PSI	Dim (%)
Austria	81.5, .00**	CATI	2.57	.91	.86	6.1
Austria	138.1, 00**	CAWI	1.97	.93	.89	7.5
Germany	84.5, .00**	PAPI	1.38	.90	.89	7.9
Slovenia	108.1, 00**	CAWI	2.73	.94	.88	9.9
Slovenia	94.2, .00**	CAPI	2.55	.94	.88	4.8

^{*}p < .05, **p < .01. The chi-square test for overall data-model fit using PCM was based on a reduced sample size with 20 persons for each of 33 thresholds, n = 660. Reducing sample size down to n = 330 or 10 persons improved fit and displayed acceptable overall data-model fit.

Table C1b. HLS₁₉-COM-Q6 overall analyses

Country	χ², p	BA a d a	Dann	Relia	bility	Direc (0/)
Country		Mode	Mean	α	PSI	Dim (%)
Austria	33.2, .1	CATI	2.39	.86	.75	5.3
Austria	53.5, 00**	CAWI	1.76	.89	.82	3.9
Belgium	57.3, 00**	CAWI	2.20	.90	.82	4.4
Bulgaria	62.9, 00**	CAPI	1.34	.87	.80	6.5
Bulgaria	93.2, 00**	CAWI	1.58	.88	.82	5.3
Czechia	51.3, .00**	CAWI	1.54	.88	.83	5.1
Denmark	86.7, .00**	CAWI	1.97	.90	.83	7.5
France	44.5, .01*	CAWI	1.85	.89	.83	3.6
Germany	34.6, .07	PAPI	1.21	.84	.81	5.0
Hungary	52.1, .00**	CATI	1.88	.88	.77	3.0
Slovenia	47.7, .00**	CAWI	2.47	.89	.79	4.4
Slovenia	45.8, .00**	CAPI	2.36	.90	.78	3.0

*p < .05, **p < .01. The chi-square test for overall data-model fit using PCM was based on a reduced sample size with 20 persons for each of 18 thresholds, n = 360. Reducing sample size down to n = 180 or 10 persons per threshold, also data from Belgium, Czechia, Denmark, Hungary and Slovenia display acceptable overall data-model fit.

Table D1. HLS₁₉-NAV overall analyses

Country	2	Mode	Mean	Relia	bility	Dim (9/)
Country	χ², p	iviode	iviean	α	PSI	Dim (%)
Austria	59.3, .13	CATI	.91	.92	.90	9.6
Austria	82.0, 00**	CAWI	.19	.92	.91	10.5
Belgium	107.3, 00**	CAWI	07	.93	.92	11.5
Czechia	73.4, .01*	CAWI	15	.93	.92	5.3
France	165.2, 00**	CAWI	.11	.94	.93	8.3
Germany	73.8, 01*	PAPI	31	.88	.88	12.2
Portugal	122,9, .00**	CATI	.21	.94	.88	9.3
Slovenia	137.5, 00**	CAWI	.96	.94	.92	9.2
Slovenia	105.0, .00**	CAPI	.63	.93	.91	10.3
Switzerland	74.3, 01*	CAWI	.04	.92	.91	9.7

^{*}p < .05, **p < .01. The chi-square test for overall data-model fit using PCM was based on G = 5 groups of respondents and a reduced sample size with 20 persons for each of 36 thresholds n = 720. Reducing sample size down to n = 360 or 10 persons per threshold also data collected in Belgium, Portugal and Slovenia display acceptable overall data-model fit (not France). **Note**. Analysis of dimensionality was based on the two **theoretical** subdimensions (items OPNHL1–5 and OPNHL6–11(12)).

Table E1. HLS₁₉-VAC (4 items, q19, q22, q26, q29) overall analyses

Committee	2	80 - d -		Relia	bility	D: (0/)a
Country	χ², ρ	Mode	Mean	α	PSI	Dim (%) ^a
Austria	48.6, .00**	CATI	1.69	.82	.68	8.9
Austria	26.5, .05	CAWI	1.49	.83	.72	9.1
Belgium	31.9, .01*	CAWI	1,06	.88	.82	18.1
Bulgaria	27.4, .04*	CAPI	.16	.72	.67	7.8
Bulgaria	85.1, .00**	CAWI	.31	.71	.63	13.0
Czechia	18.3, .11	CAWI	.87	.80	.73	15.8
Czechia	39.9, .00**	CATI	1.60	.76	.55	11.7
Germany	24.8, .07	PAPI	.90	.76	.71	9.6
Hungary	17.0, .15	CATI	1.38	.78	.70	11.6
Ireland	22.9, .12	CAWI	1.15	.77	.57	5.7
Italy	23.9, .05	CATI	.89	.75	.64	6.8
Italy	10.7, .56	CAWI	.98	.81	.73	5.8
Norway	36.2, .00**	CATI	1.49	.77	.66	6.7
Portugal	74.2, .00**	CATI	1.36	.72	.55	13.1
Slovenia	29.3, .02*	CAWI	1.28	.77	.69	7.5
Slovenia	20.7, .06	CAPI	1.21	.82	.78	8.1

^aDimensionality (Dim) refers to the proportion of respondents with significantly different person estimates on HLS_{19} -Q12 and HLS_{19} -VAC,*p < .05, **p < .01. The chi-square test for overall data-model fit using PCM was based on G = 5 groups of respondents and a sample size with **30** persons for each of 12 thresholds n = 360. We used 30 persons and not 20 per threshold as there are few items in the VAC-scale. Reducing sample size down to n = 240 or 20 persons per threshold also data collected in Norway and Czechia (CATI) display acceptable overall data-model fit. Reducing sample size down to n = 120 or 10 persons per threshold data collected in Austria (CATI), Bulgaria (CAWI) and Portugal display acceptable fit.

REFERENCES

Adams, R. J., Wu, M. L., Cloney, D., & Wilson, M. R. (2020). *ACER ConQuest: Generalised Item Response Modelling Software [Computer software] Version 5*. Camberwell, Victoria: Australian Council for Educational Research.

Andrich, D. (1978). A rating scale formulation for ordered response categories. *Psychometrika*, *43*, 561–573.

Andrich, D. (2011). Advanced course in Rasch Measurement of Modern test Theory: Responses to the Model – Analysis of Residuals [Lecture note 8]. Unpublished manuscript.

Andrich, D., & Marais, I. (2019). A Course in Rasch Measurement Theory: Measuring in the Educational, Social and Health Sciences. Springer.

Andrich, D., & Sheridan, B. (2019). RUMM2030 Plus [Computer software]. Rumm Laboratory Pty Ltd.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick, *Statistical Theories on Mental Test Scores, Reading: Mass./Addison-Wesley* (pp. 397–479). Reading.

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. *Bmj*, 310(6973), 170.

Christian, L. M., Dillman, D. A., & Smyth, J. D. (2008). The Effects of Mode and Format on Answers to Scalar Questions in Telephone and Web Surveys. In J. M. Lepkowski, C. Tucker, J. M. Brick, E. De Leeuw, L. Japec, & P. J. Lavrakas, *Advances in Telephone Survey Methodology* (pp. 250–275). Wiley-Blackwell. https://experts.nebraska.edu/en/publications/the-effects-of-mode-and-format-on-answers-to-scalar-questions-in-

de Ayala, R. J. (2009). The theory and practice of item response theory. Guilford Press.

Finbråten, H. S., Wilde-Larsson, B., Nordström, G., Pettersen, K. S., Trollvik, A., & Guttersrud, Ø. (2018). Establishing the HLS-Q12 short version of the European Health Literacy Survey Questionnaire: Latent trait analyses applying Rasch modelling and confirmatory factor analysis. *BMC Health Services Research*, 18(1), 1–17.

Guyer, R., & Thompson, N. A. (2014). *User's Manual for Xcalibre item response theory calibration software, version 4.2.2 and later.* Woodbury MN: Assessment Systems Corporation.

Lugtig, P., Lensvelt-Mulders, G. J., Frerichs, R., & Greven, A. (2011). Estimating nonresponse bias and mode effects in a mixed-mode survey. *International Journal of Market Research*, *53*(5), 669–686.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

Muraki, E. (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. *Applied Psychological Measurement*, *16*(2), 159–176.

Rasch, G. (1960). *Probabilistic models for some intelligence and attainment tests (Expanded ed.)*. University of Chicago Press.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. *Psychometrika Monograph Supplement No. 17*. http://www.psychometrika.org/journal/online/MN17.pdf

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. *Psychometrika*, *51*(4), 567–577.

Van Wyke, J., & Andrich, D. (2006). A typology of polytomously scored mathematics items disclosed by the Rasch model: Implications for constructing a continuum of achievement. In: Report No 2 ARC Linkage Grant LP0454080. Maintaining Invariant Scales in State, National and International Level Assessments. Perth, Western Australia. Murdoch University. *Unpublished Report, Perth, Australia*.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.583.9714&rep=rep1&type=pdf

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. *Psychometrika*, *54*(3), 427–450. https://doi.org/10.1007/BF02294627

Wright, B. D., & Stone, M. H. (1979). Best test design. MESA.

Ye, C., Fulton, J., & Tourangeau, R. (2011). More positive or more extreme? A meta-analysis of mode differences in response choice. *Public Opinion Quarterly*, 75(2), 349–365.

APPENDIX

The appendix consists of tables with item-specific statistics for the different scales. We have based all analyses on the PCM.

Table A2. HLS₁₉-Q12 single item statistics

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
Austria	4	0.005	2.419	0.933	1.03	-
	7	-1.279	2.160	0.951	1.00	-
	10	2.459	17.211	0.016	1.08	-
	16	-0.455	6.671	0.464	1.01	-
	18	0.013	5.833	0.559	1.03	-
	23	-5.409	23.759	0.001	0.91	-
	24	-1.678	2.714	0.910	1.00	-
	31	3.164	12.84	0.076	1.12	-
	32	-3.603	9.121	0.244	0.95	-
	37	1.267	6.740	0.456	1.07	-
	42	-2.954	8.949	0.256	0.98	-
	44	-2.942	9.744	0.204	0.96	-
				1		
Austria	4	0.712	13.334	0.064	1.03	-
CAWI	7	-0.625	4.803	0.684	1.00	-
	10	2.018	23.709	0.001	1.09	-
	16	-0.152	18.450	0.010	1.03	health#
	18	1.529	8.095	0.324	1.07	-
	23	-2.100	12.958	0.073	0.96	agedico*
	24	-1.987	8.540	0.287	0.97	-
	31	2.297	4.984	0.662	1.10	soc.level
	32	-2.704	15.650	0.029	0.94	-
	37	2.704	27.834	<0.001	1.14	gender, agedico*
	42	-1.804	12.366	0.089	0.97	-
	44	-3.236	22.541	0.002	0.92	health*
Belgium	4	0.872	9.323	0.230	1.02	-
n=997ª	7	1.320	8.215	0.314	1.06	-
	10	-0.525	16.173	0.024	0.98	-
	16	-1.455	10.353	0.170	0.98	-
	18	1.626	6.309	0.504	1.08	-
						agedico*, agecat1*,
	23	-2.795	17.460	0.015	0.91	agecat2*, employment*
	24	-0.943	12.120	0.097	0.97	-
	31	3.956	26.746	<0.001	1.18	agecat1, employment*
	32	-2.828	12.580	0.083	0.91	-
	37	0.985	6.881	0.441	1.05	gender, pay bills*

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
	42	-1.221	9.097	0.246	0.94	-
	44	-1.711	16.165	0.024	0.95	health*
		T				
Bulgaria	4	-1249	4.004	0.779	0.93	-
CAPI	7	-1.182	10.612	0.156	0.94	gender*
n=402	10	-1.013	9.802	0.200	0.91	-
	16	-1.061	9.249	0.235	0.95	-
	18	-1.197	13.424	0.062	0.94	-
	23	4.618	38.920	<0.001	1.30	soc.level*, health*
	24	-1.984	14.623	0.041	0.94	-
	31	1.172	4.447	0.727	1.05	-
	32	-1.232	10.509	0.162	0.94	agecat1*, employment*
	37	0.235	6.067	0.532	1.04	-
	42	-0.062	8.384	0.300	1.05	-
	44	1.071	11.121	0.133	1.08	agecat2*
Bulgaria	4	0.963	11.540	0.117	1.07	-
CAWI	7	-0.050	3.022	0.883	0.97	-
n=463	10	-2.814	19.315	0.007	0.83	-
	16	-1.914	9.225	0.237	0.89	-
	18	-0.658	3.524	0.833	0.98	-
	23	9.427	131.899	<0.001	1.61	health*
	24	-2.274	15.227	0.033	0.88	agecat1*, health*#
	31	0.058	10.379	0.168	1.00	-
	32	-1.374	6.253	0.511	0.95	-
	37	-1.499	11.318	0.125	0.89	-
	42	0.376	2.718	0.910	1.02	-
	44	0.455	13.726	0.056	0.98	agedico*, agecat2*
Czechia	4	-2.090	11.767	0.109	0.93	-
CATI	7	-2.531	15.554	0.030	0.89	-
n=530	10	1.116	4.264	0.749	1.04	-
	16	0.093	13.059	0.071	1.08	agecat1*, health*#
	18	-1.199	15.338	0.032	0.98	-
	23	-3.074	10.932	0.142	0.90	-
	24	-0.049	5.353	0.617	1.07	-
	31	-0.108	7.300	0.398	1.03	agedico*, agecat2*
						agedico*, agecat1*, agecat2*, education*,
	32	-1.270	5.762	0.568	0.99	employment*
	37	0.228	6.248	0.511	1.13	-
	42	-0.423	2.792	0.904	1.02	- 1.1.0
	44	1.845	11.938	0.103	1.13	health*
Czechia	4	-2.482	15.614	0.029	0.93	-

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
CAWI	7	-1.674	8.617	0.281	0.95	agedico
	10	-0.506	26.912	<0.001	0.98	education
	16	-0.674	9.357	0.228	1.01	-
	18	-0.980	17.101	0.017	1.00	-
	23	-1.014	2.523	0.925	1.02	gender, agedico, agecat1, agecat2
	24	-1.200	10.266	0.174	1.00	-
	31	-1.275	10.258	0.174	0.97	-
	32	0.115	20.740	0.004	1.06	agedico, education*, agecat2
	37	0.877	10.932	0.142	1.07	-
	42	-2.059	12.450	0.087	0.95	-
	44	1.415	13.769	0.055	1.10	-
	T	T				
Denmark	4	-0.761	2.022	0.959	1.00	-
	7	0.239	4.3	0.745	1.04	-
	10	-0.640	17.394	0.015	0.97	-
	16	-4.320	13.206	0.067	0.91	-
	18	0.325	4.713	0.695	1.03	<u>-</u>
	23	-3.011	9.08	0.247	0.97	gender, agedico*, agecat2*
	24	-2.366	10.36	0.169	0.98	-
	31	2.057	11.196	0.130	1.05	-
	32	-6.151	28.741	<0.001	0.89	gender
	37	1.162	7.642	0.365	1.07	-
	42	-0.794	3.572	0.828	1.02	agedico*, agecat1*, agecat2*, employment*
	44	3.862	7.698	0.360	1.10	-
France	4	3.636	32.900	<0.001*	1.16	-
	7	-1.091	5.880	0.554	1.01	-
	10	-0.140	24.333	0.001	1.01	-
	16	-0.376	56.743	<0.001*	1.07	-
	18	-1.658	25.695	0.001	0.96	-
	23	-4.237	9.312	0.231	0.94	agedico*, agecat1*, agecat2*, employment*
	24	-5.807	17.438	0.015	0.91	-
	31	0.464	32.524	<0.001*	1.03	-
	32	-2.572	18.651	0.009	0.96	-
	37	0.745	16.855	0.018	1.12	employment
	42	-4.608	11.991	0.101	0.93	agecat1, pay bills
	44	-4.150	11.803	0.107	0.94	-
_						
Germany	4	0.934	2.859	0.898	1.03	-
	7	-0.738	7.782	0.352	0.97	-
	10	-1.034	7.162	0.412	0.95	-

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p		fit ISQ	DIF n=1080
	16	0.122	3.922	0.789	1.0	03	-
	18	-0.644	3.425	0.843	0.9	98	-
	23	-2.663	17.032	0.017	0.9	95	agedico
	24	-1.446	3.805	0.802	0.98		-
	31	0.323	5.862	0.556	1.0	00	-
	32	-2.359	10.757	0.150	0.9	95	-
	37	4.039	43.221	<0.001*	1.	15	education, soc.level
	42	1.084	5.693	0.576	1.0	05	-
	44	0.602	3.015	0.884	1.0	04	-
11	1	2 204	20.007	-0.004	4	1.0	
Hungary	4	2.381	29.997	<0.001		18	-
	7	-2.105	5.519	0.597	1.0		education
	10	-2.606	17.867	0.013	0.9		-
	16	-3.711	22.214	0.002	0.9		-
	18	1.488	22.086	0.003	1.		
	23	-4.287	19.474	0.007	0.9		education
	24	-3.247	5.937	0.547	0.9		-
	31	3.268	45.190	<0.001*	1.		education
	32	-3.804	10.828	0.146293	0.9		agecat1, employment*
	37	-2.513	10.178	0.178704	0.9		-
	42	-3.759	8.902	0.259741	0.9		-
	44	-2.278	7.328	0.395593	1.0	00	-
Ireland					Set A	Set B	
N > 3000	4	1.837	3.999	0.780	1.08	1.05	-
	7	3.400	2.243	0.945	1.06	1.05	agecat1
	10	4.343	6.033	0.536	1.08	1.04	-
	16	-4.564	20.354	0.005	0.94	0.94	-
	18	3.351	4.110	0.767	1.02	1.10	-
	23	-5.584	24.935	0.001	0.88	0.93	-
	24	-1.694	6.155	0.522	0.98	0.98	-
	31	11.082	42.714	<0.001*	1.19	1.22	-
	32	-4.466	18.342	0.011	0.96	0.95	-
	37	-1.004	13.969	0.052	0.97	0.98	-
	42	-0.410	8.937	0.257	1.04	1.02	agedico, agecat1, agecat2
	44	-3.061	18.514	0.010	0.94	0.95	-
Israel	4	-0.130	4.163	0.761	0.9	99	-
CAWI	7	0.818	5.447	0.606	1.0	03	-
	10	0.072	19.638	0.006	0.9	99	agecat1
	16	-0.930	16.340	0.022	0.9	95	-
	18	-0.998	7.814	0.349	0.9	97	-
	23	-2.142	13.312	0.065	0.9	95	agedico, agecat2
	24	-0.365	5.276	0.626	1.0	05	-

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
	31	0.048	8.687	0.276	0.98	-
	32	-0.621	22.741	0.002	1.03	gender
	37	0.022	5.011	0.659	1.03	-
	42	0.211	16.057	0.025	1.03	-
	44	0.350	9.553	0.215	1.04	-
	T					
Italy	4	-1.829	2.629	0.917	1.02	-
CATI	7	-3.304	16.510	0.021	0.90	-
n=551	10	-1.414	18.830	0.009	1.00	-
	16	-1.197	19.147	0.008	1.02	-
	18	-0.854	5.853	0.557	1.05	-
	23	-3.488	16.136	0.024	0.88	-
	24	-3.198	14.797	0.039	0.89	-
	31	1.194	16.344	0.022	1.13	-
	32	-2.323	12.558	0.084	0.99	agecat1*
	37	-0.252	20.042	0.006	1.12	-
	42	-2.923	2.917	0.893	0.95	-
	44	-0.745	13.954	0.052	1.09	-
Italy	4	2.496	20.916	0.004	1.09	-
CAWI	7	-4.491	34.767	<0.001	0.90	-
	10	-0.892	12.313	0.091	0.99	-
	16	-0.853	28.921	<0.001	1.02	-
	18	-0.344	21.326	0.003	1.02	-
	23	-4.380	19.852	0.006	0.93	-
	24	-3.415	32.903	<0.001	0.95	-
	31	1.040	39.284	<0.001	1.06	-
	32	1.090	27.021	<0.001	1.07	-
	37	-0.279	9.901	0.194	1.03	-
	42	-0.943	5.502	0.599	1.00	-
	44	-2.223	11.884	0.105	0.97	_
				0.200	0.07	
Norway	4	1.057	3.115	0.874	1.03	-
,	7	0.777	4.306	0.744	1.02	-
	10	3.180	10.700	0.152	1.08	_
	16	-4.522	18.621	0.009	0.89	-
	18	1.335	5.501	0.599	1.05	-
	23	-5.696	28.421	<0.001	0.89	-
	24	-2.661	9.317	0.231	0.85	-
	31	6.412	28.895	<0.001	1.17	-
	32	-3.400	13.787	0.055	0.95	-
	37		5.010	0.659	0.95	-
	42	-1.220 0.440	6.405	0.659	1.04	agedico, agecat2, employment
	44	0.440	3.235	0.493	1.04	- employment

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p		fit ISQ	DIF n=1080
Portugal	4	-4.795	11.852	0.106	1.	02	-
	7	-3.945	8.943	0.257	1.	07	soc.level, employment
	10	-2.447	71.880	<0.001*	1.	07	soc. level*
	16	-2.631	84.219	<0.001*	<0.001* 1.02	02	pay bills#
	18	-2.901	29.074	<0.001	1.	05	-
	23	-5.229	11.061	0.136	0.	91	-
	24	-6.852	8.467	0.293	0.	84	-
	31	-1.955	59.742	<0.001*	1.	06	-
	32	-8.566	26.022	0.001	0	79	agedico*#, agecat1*, agecat2*
	37	-4.769	17.228	0.016		87	-
	42	-4.668	5.109	0.647		88	_
	44	-3.794	5.104	0.647		04	agecat2
		-5.754	3.104	0.047	1.		agecatz
Russia					Set A	Set B	
Nussia	4	-4.912	14.363	0.045	1.06	1.07	-
	7	-7.570	15.121	0.035	0.98	0.98	-
	10	-5.882	55.904	<0.001*	1.01	0.94	-
	16	-7.664	17.821	0.013	0.98	1.10	-
	18	-8.720	3.384	0.847	0.97	1.03	-
	23	-9.794	14.145	0.049	0.93	0.95	-
	24	-11.843	3.327	0.853	0.92	1.10	-
	31	-7.132	14.769	0.039	1.03	0.97	_
	32	-10.220	38.239	<0.001*	0.93	0.97	-
	37	-4.727	13.567	0.059	1.10	1.06	-
	42	-7.551	3.730	0.810	0.96	1.03	-
	44	-2.978	8.516	0.289	1.09	1.09	-
		2.370	0.010	0.203	1.03	1.03	
Slovakia	4	-1.142	4.134	0.764	0.	99	-
	7	-2.017	14.02	0.051		96	-
	10	-0.383	8.31	0.306		99	-
	16	0.442	13.918	0.053		05	-
	18	-2.415	9.383	0.226		94	-
	23	-3.325	5.049	0.654		95	-
	24	-1.596	4.807	0.684		00	-
	31	1.871	7.554	0.374		08	-
	32	-5.334	28.07	<0.001		89	-
	37	0.856	14.677	0.040		06	-
	42	-1.066	2.989	0.886		01	-
	44	1.567	8.956	0.256		10	-
		1.507	5.550	3.230	<u> </u>		
Slovenia	4	-1.2	2.466	0.930	0.	97	-
CAWI	7	-3.031	12.854	0.076		91	agedico*, agecat2
	10	1.624	10.812	0.147		05	-

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
	16	-2.47	14.815	0.039	0.93	-
	18	-3.293	18.822	0.009	0.91	-
						agedico*, agecat1*,
	23	-1.086	21.182	0.004	1.02	agecat2*, employment*
	24	-5.265	29.706	<0.001	0.87	-
	31	7.859	99.689	<0.001*	1.32	education*, pay bills
	32	-2.734	27.45	<0.001	0.94	education*, soc. level
	37	-1.791	26.717	<0.001	0.96	-
	42	-1.586	11.398	0.122	0.97	-
	44	3.574	26.423	<0.001	1.17	-
Slovenia	4	-2.07	5.666	0.579	1.10	-
CAPI	7	-5.838	7.645	0.365	0.93	-
	10	-1.017	42.188	<0.001*	1.07	-
	16	-5.588	22.078	0.003	0.94	-
	18	-6.15	13.248	0.066	0.93	-
						gender, agedico*,
	23	-3.874	9.672	0.208	1.01	agecat1*, agecat2*
	24	-9.418	22.354	0.002	0.85	-
	31	3.795	56.132	<0.001*	1.25	health
	22	F C10	17.042	0.017	0.03	agedico, agecat1,
	32	-5.619	17.042	0.017	0.92	agecat2, employment
	37	-2.824	6.972	0.432	1.07	-
	42	-4.697	8.398	0.299	0.96	-
	44	-2.712	6.454	0.488	1.08	-
		2 004	44 244	0.420	4.00	
Switzerland	4	2.891	11.241	0.128	1.06	-
CAWI	7	-2.762	13.594	0.059	0.93	-
	10	-0.039	4.479	0.723	1.00	-
	16	-1.773	11.139	0.133	0.97	-
	18	-3.141	12.152	0.096	0.94	-
	23	-2.238	3.662	0.818	0.98	agedico*, agecat1, agecat2*
	24	-0.713	4.188	0.758	1.02	agecatz -
	31	4.839	26.514	<0.001	1.16	pay bills
						pay DIIIS
	32	-2.292	10.475	0.163	0.97	agedico*, agecat1,
	37	2.155	16.058	0.025	1.11	agecat2*, employment
	42	-3.206	6.710	0.460	0.97	-
	44	-2.117	6.419	0.492	0.97	-

⁺ not in complete data

[#] non-uniform DIF

^{*}significant when sample size = 720

^asample size available for Rasch analysis (excluding extreme scorers) when sample size is less than 1000

Not reported in table: HLS₁₉-Q12 item 16 displayed unordered thresholds in the Belgian, Czech (CATI), Irish, and Norwegian data (not significant in the Norwegian data). In Czech (CATI) data also HLS₁₉-Q12 item 32 displayed unordered thresholds. In the Austrian data, we observed *in*significant unordered thresholds for HLS₁₉-Q12 item 4.

Table B2. HLS₁₉-DIGI (8 items version) single item statistics

Country	Item	Fit.res.	Chi sq n=720	Chi sq p	Infit MNSQ	DIF n=720
Austria	OPDHL21	-0.572	2.001	0.736	1.03	-
	OPDHL22	0.303	2.469	0.650	1.04	-
	OPDHL23	-0.646	1.669	0.796	1.02	-
	OPDHL24	-1.58	2.897	0.575	0.98	-
	OPDHL25	3.423	8.800	0.066	1.13	-
	OPDHL26	0.478	0.553	0.968	1.05	-
	OPDHL27	-3.647	5.072	0.280	0.93	-
	OPDHL28	-2.193	3.964	0.411	0.96	-
Austria	OPDHL21	1.544	11.472	0.022	1.09	-
CAWI	OPDHL22	0.077	8.856	0.065	0.99	-
	OPDHL23	-1.234	4.327	0.364	0.95	education
	OPDHL24	-0.637	11.352	0.023	0.98	-
	OPDHL25	1.086	11.740	0.019	1.08	-
	OPDHL26	0.517	14.502	0.006	1.08	-
	OPDHL27	-3.834	18.723	0.001	0.88	-
	OPDHL28	-0.698	7.147	0.128	0.99	-
Belgium	OPDHL21	0.854	7.852	0.097	1.14	agecat1, employment
						agedico, agecat1,
	OPDHL22	-3.054	8.077	0.089	0.89	agecat2, employment
	OPDHL23	-2.405	1.903	0.754	0.96	-
	OPDHL24	-0.452	6.662	0.155	1.03	-
	OPDHL25	5.925	27.452	<0.001*	1.34	agecat1
	OPDHL26	-1.531	1.896	0.755	1.03	-
	OPDHL27	-5.793	20.37	<0.001	0.81	-
	OPDHL28	-2.608	9.968	0.041	0.91	-
		1	1	1		
Czechia	OPDHL21	1.549	25.159	<0.001*	1.12	-
CAWI	OPDHL22	-1.49	2.102	0.717	0.96	agecat1
	OPDHL23	-3.252	10.869	0.0287	0.88	-
	OPDHL24	-1.518	10.717	0.030	0.94	-
	OPDHL25	3.926	9.112	0.058	1.24	-
	OPDHL26	-0.584	9.643	0.047	1.03	-
	OPDHL27	-2.368	6.176	0.186	0.93	-
	OPDHL28	-1.267	8.775	0.067	0.95	-
Denmark	OPDHL21	-3.504	7.577	0.108	1.01	-
	OPDHL22	-3.715	6.11	0.191	1	-

Country	Item	Fit.res.	Chi sq n=720	Chi sq p		fit ISQ	DIF n=720
	OPDHL23	-6.656	12.999	0.011	0.	93	-
	OPDHL24	-2.667	7.17	0.127	1.	03	-
	OPDHL25	4.816	41.999	<0.001*	1.	23	-
	OPDHL26	-2.379	5.121	0.275	1.	05	agedico, agecat1*, agecat2, employment
	OPDHL27	-9.606	8.841	0.065		86	-
	OPDHL28	-6.122	5.996	0.120		91	-
	0.220	V	3.333	5.225	<u> </u>		
Germany	OPDHL21	0.165	0.53	0.971	1.	04	-
	OPDHL22	-1.679	3.083	0.544	0.	95	-
	OPDHL23	-0.688	2.536	0.638	0.	94	-
	OPDHL24	-0.632	6.682	0.154	0.	99	-
	OPDHL25	3.189	5.998	0.199	1.	14	-
	OPDHL26	-0.616	2.069	0.723	1.	02	-
	OPDHL27	-1.669	3.051	0.549	0.	95	-
	OPDHL28	0.076	0.764	0.943	1.	01	-
Hungary	OPDHL21	-2.192	13.684	0.008	1.	01	agedico, education
	OPDHL22	-3.549	4.599	0.331	0.	95	-
	OPDHL23	-3.072	13.085	0.011	0.	95	-
	OPDHL24	0.279	36.973	<0.001*	1.	04	-
	OPDHL25	1.234	27.713	<0.001*	1.	13	-
	OPDHL26	-1.642	5.681	0.224	0.	99	-
	OPDHL27	-3.216	9.64	0.047	0.	95	-
	OPDHL28	-2.823	9.059	0.060	0.	93	-
Ireland n > 3000	000111.24	0.553	2 226	0.510	Set A	Set B	
11 > 3000	OPDHL21	-0.552	3.236	0.519	1.04	0.98	-
	OPDHL22	-1.564	6.147	0.188	0.91	0.96	-
	OPDHL23	-2.365	10.148	0.038	0.9	0.94	-
	OPDHL24	-0.501	2.188	0.701	0.96	0.98	-
	OPDHL25 OPDHL26	10.92 3.169	18.052 1.591	0.001* 0.811	1.25 1.05	1.20	
	OPDHL26 OPDHL27	-3.998	14.869	0.005*	0.89	0.91	agecat2
	OPDHL27 OPDHL28	2.956	2.035	0.003	1.08	1.03	-
	UPDIIL28	2.930	2.035	0.729	1.08	1.05	-
Israel	OPDHL21	1.398	10.367	0.035	1.	 11	-
CAWI	OPDHL22	-1.316	3.833	0.429		 96	-
	OPDHL23	-1.046	3.586	0.465		97	-
	OPDHL24	-1.583	10.596	0.032		95	-
	OPDHL25	3.252	23	<0.001		21	-
	OPDHL26	-1.442	5.828	0.212		 01	-
	OPDHL27	-2.81	11.232	0.024		92	-
	OPDHL28	-1.935	4.187	0.381		94	-
			207	5.552			

Country	Item	Fit.res.	Chi sq n=720	Chi sq p	Infit MNSQ	DIF n=720
Norway	OPDHL21	-0.997	5.31	0.257	1.01	720
Norway	OPDHL22	-0.997	3.907	0.419	0.99	-
	OPDHL23	-5.126			0.89	
			12.361	0.015		-
	OPDHL24	-1.699	2.835	0.586	0.97	-
	OPDHL25	3.5	6.339	0.175	1.16	-
	OPDHL26	1.841	16.775	0.002	1.13	agedico, agecat1, agecat2
	OPDHL27	-3.105	7.84	0.098	0.92	-
	OPDHL28	0.199	4.784	0.310	1.02	-
		1	,			
Portugal	OPDHL21	-3.721	25.026	<0.001*	0.97	-
	OPDHL22	-3.973	2.906	0.574	0.99	-
	OPDHL23	-5.64	22.039	<0.001*	0.86	-
	OPDHL24	-5.371	23.089	<0.001*	0.92	-
	OPDHL25	-2.775	5.689	0.224	1.09	-
	OPDHL26	-1.937	30.796	<0.001*	1.22	-
	OPDHL27	-5.47	19.947	<0.001	0.84	education#
	OPDHL28	-0.925	29.589	<0.001*	1.14	gender, soc.level
Switzerland	OPDHL21	1.048	15.117	0.004	1.11	-
CAWI	OPDHL22	-2.262	4.18	0.382	1.00	-
	OPDHL23	-3.391	4.925	0.295	0.96	-
	OPDHL24	-3.594	10.805	0.029	0.95	-
	OPDHL25	4.423	14.448	0.006	1.20	gender
	OPDHL26	-1.079	6.584	0.160	1.06	agedico
	OPDHL27	-4.535	7.186	0.126	0.91	-
#	OPDHL28	-3.402	6.552	0.161	0.95	-

[#] non-uniform DIF

Not reported in table: Response dependency was observed between items OPDHL21 and OPDHL22 in Danish (r = .31) and Hungarian (r = .32) data.

Table C2a. HLS₁₉-COM-Q11 single item statistics

Country	Item	Fit.res.	Chi sq n=990	Chi sq p	Infit MNSQ	DIF n=990
Austria	OPCOM1	1.14	20.956	<0.001*	1.07	-
	OPCOM2	-1.807	1.936	0.748	1.02	-
	ОРСОМ3	-4.478	9.510	0.050	0.95	-
	OPCOM4	3.868	19.668	0.001	1.21	agedico, agecat2
	OPCOM5	-7.175	9.744	0.045	0.89	-
	ОРСОМ6	-6.666	14.962	0.005	0.90	-
	ОРСОМ7	3.209	14.114	0.007	1.18	-
	OPCOM8	-6.835	13.580	0.009	0.91	-

^{*}significant when sample size = 480

Country	Item	Fit.res.	Chi sq n=990	Chi sq p	Infit MNSQ	DIF n=990
	ОРСОМ9	-5.135	7.025	0.135	0.92	-
	OPCOM10	0.23	6.174	0.187	1.12	-
	OPCOM11	-1.219	4.636	0.327	1.04	-
Austria	OPCOM1	1,287	18,509	0.001	1.17	-
CAWI	OPCOM2	-3,040	10,878	0,028	0.99	-
	OPCOM3	-3,632	15,986	0.003	1.01	-
	OPCOM4	-0,314	11,861	0.018	1.12	-
	OPCOM5	-4,925	12,92	0.012	0.94	gender*
	OPCOM6	-5,384	16,863	0.002	0.90	-
	ОРСОМ7	4,736	31,599	<0.001*	1.38	gender*, agedico, education
	OPCOM8	-6,026	22,093	<0.001	0.94	-
	OPCOM9	-4,990	25,019	<0.001*	0.92	-
	OPCOM10	4,009	39,136	<0.001*	1.38	-
	OPCOM11	-0,814	2,275	0.685	1.11	-
						T
Germany	OPCOM1	-1.152	31,491	<0.001*	1.05	-
	OPCOM2	-2.428	2,474	0.649	1	-
	OPCOM3	-4.387	21,444	<0.001	0.93	-
	OPCOM4	2.312	9,542	0,049	1.11	-
	OPCOM5	-3.771	5,285	0,259	0.96	-
	ОРСОМ6	-5.928	8,83	0,066	0.86	-
	OPCOM7	2.126	12,039	0,017	1.1	education*
	OPCOM8	-6.269	11,362	0,023	0.89	-
	OPCOM9	-2.298	6,072	0,194	0.97	-
	OPCOM10	2.169	11,987	0,018	1.15	-
	OPCOM11	0.820	6,212	0,184	1.11	-
Slovenia	OPCOM1	2 120	30.502	<0.001*	1.02	
CAWI	OPCOM1	-2.120 -4.925	7.308	0,121	0.92	-
CAVVI	OPCOM2	-8.006	11.917	0,121	0.92	-
	OPCOM4	1.124	22.221	<0.001	1.18	_
	OPCOM5	-3.391	20.394	<0.001	1.01	_
	OPCOM6	-6.280	12.622	0.013	0.89	agedico, education
	OPCOM7	-2.029	6.824	0.146	1.11	education*, pay bills*
	OPCOM8	-4.440	8.925	0.063	1.11	- pay bilis
	OPCOM9	-7.518	25.793	<0.001*	0.81	-
	OPCOM10	-1.244	11.826	0.019	1.14	-
	OPCOM11	-1.260	3.842	0.428	1.09	-
	O. CONTIL	1.200	5.072	0.720	1.05	
Slovenia ^x	OPCOM1	-5.025	24.671	<0.001*	1.02	-
CAPI	OPCOM2	-7.792	2.599	0.458	0.96	-

Country	Item	Fit.res.	Chi sq n=990	Chi sq p	Infit MNSQ	DIF n=990
	ОРСОМ3	-11.284	15.547	0.001	0.84	-
	ОРСОМ4	-3.548	16.233	0.001	1.16	-
	OPCOM5	-10.365	7.585	0.055	0.85	
	ОРСОМ6	-8.980	6.403	0.094	0.89	-
	ОРСОМ7	-5.481	1.65	0.648	1.03	-
	OPCOM8	-9.367	15.64	0.002	0.88	-
	ОРСОМ9	-4.006	45.754	<0.001*	1.08	-
	OPCOM10	-4.245	3.591	0.309	1.13	agecat2*
4	OPCOM11	-4.397	2.019	0.568	1.07	-

[#] non-uniform DIF

Not reported in table: Response dependency was observed between items OPCOM1 and OPCOM3 (r= .35) in the German data.

Table C2b. HLS₁₉-COM-Q6

Country	Item	Fit.res.	Chi sq	Chi sq p	Infit	DIF
Country	l item	Tit.ics.	n=540	Cili 3q p	MNSQ	n=540
			5.15			5.0
Austria	OPCOM3	-0.903	8.088	0.088	1.03	-
7 10:00 10:	OPCOM4	3.215	12.101	0.017	1.21	-
	OPCOM5	-7.609	9.920	0.042	0.88	-
	ОРСОМ8	-5.605	9.087	0.059	0.92	-
	ОРСОМ9	-3.930	3.519	0.475	0.93	-
	OPCOM10	2.536	7.092	0.131	1.15	-
	_					
Austria	ОРСОМ3	-0.375	8.893	0.064	1.06	-
CAWI	OPCOM4	-0.414	7.847	0.097	1.05	-
	OPCOM5	-5.198	10.867	0.028	0.85	-
	OPCOM8	-5.017	12.118	0.017	0.88	-
	ОРСОМ9	-3.623	10.582	0.032	0.88	-
	OPCOM10	5.652	29.873	<0.001	1.32	-
Belgium ⁱ	ОРСОМ3	0.276	5.107	0.277	1.07	-
	OPCOM4	0.903	8.181	0.085	1.16	-
	OPCOM5	-4.997	16.462	0.002	0.85	-
	OPCOM8	-7.954	28.393	<0.001*	0.76	-
	ОРСОМ9	-3.357	8.083	0.089	0.91	-
	OPCOM10	3.020	19.731	<0.001	1.29	-
Bulgaria	ОРСОМ3	-2.688	10.653	0.031	0.97	-
						agecat1*, education*, employment*, soc.level,
CAPI, n=402 ^a	OPCOM4	3.016	23.911	<0.001*	1.36	health
	OPCOM5	-4.676	4.155	0.385	0.80	-

^{*}significant when sample size = $660 \times df = 3$

Country	Item	Fit.res.	Chi sq	Chi sq p	Infit	DIF
			n=540		MNSQ	n=540
	OPCOM8	-4.983	13.011	0.011	0.79	agecat1#
	ОРСОМ9	-4.157	5.329	0.255	0.88	-
	OPCOM10	0.078	5.844	0.211	1.13	-
Bulgaria	ОРСОМ3	0.111	25.797	<0.001*	1.14	agecat1*#,
CAWI, n=457	OPCOM4	2.008	29.962	<0.001*	1.27	-
	OPCOM5	-4.804	9.692	0.046	0.77	-
	OPCOM8	-4.853	11.482	0.022	0.82	-
	OPCOM9	-2.440	7.274	0.122	0.89	-
	OPCOM10	0.832	8.968	0.062	1.15	-
Carabia	0000143	2.250	15.024	0.002	0.07	
CANAI	OPCOM4	-2.250	15.824	0.003	0.97 1.09	-
CAWI	OPCOM4 OPCOM5	0.459 -6.171	7.813 10.307	0.099 0.036	0.85	<u>-</u>
	OPCOM8	-5.683	11.631	0.020	0.86	-
	OPCOM9	-3.571	11.664	0.020	0.91	_
	OPCOM10	3.482	19.643	0.020	1.34	_
	OI COIVIZO	3.402	13.013	0.001	1.54	
Denmark	ОРСОМ3	-6.843	16.221	0.002	0.95	-
	OPCOM4	7.212	42.432	<0.001*	1.36	-
	OPCOM5	-15.154	18.448	0.001	0.79	-
	OPCOM8	-16.249	18.971	0.001	0.77	-
	ОРСОМ9	-11.622	11.426	0.022	0.85	-
	OPCOM10	4.871	22.522	<0.001*	1.37	-
France ⁱ	ОРСОМ3	-3.915	16.762	0.002	1.02	-
	OPCOM4	-0.147	6.531	0.162	1.16	-
	OPCOM5	-4.252	10.354	0.035	0.98	-
	OPCOM8	-7.4	16.791	0.002	0.9	-
	OPCOM9	-7.955	9.113	0.058	0.85	-
	OPCOM10	0.572	7.219	0.125	1.21	-
	T					
Germany	OPCOM3	-1.943	16.259	0.003	1	-
	OPCOM4	2.116	9.979	0.041	1.1	-
	OPCOM5	-5.113	4.385	0.357	0.92	-
	OPCOM8	-6.135	8.21	0.084	0.88	-
	OPCOM9	-2.241	2.808	0.591	0.94	-
	OPCOM10	3.745	10.241	0.037	1.17	<u>-</u>
Hungary	ОРСОМ3	-4.453	5.619	0.230	1.01	_
i iuligai y	OPCOM3	-3.242	12.854	0.230	1.08	_
	OPCOM5	-7.962	11.780	0.012	0.81	_
	OPCOM8	-7.449	7.902	0.095	0.86	-
	OPCOM9	-5.748	7.144	0.129	0.91	_

Country	Item	Fit.res.	Chi sq n=540	Chi sq p	Infit MNSQ	DIF n=540
	OPCOM10	1.577	32.830	<0.001*	1.33	-
Slovenia	ОРСОМ3	-6.303	7.088	0.131	0.88	-
CAWI	OPCOM4	0.122	11.34	0.022	1.19	-
	OPCOM5	-4.992	13.948	0.008	0.92	-
	OPCOM8	-4.487	8.882	0.064	0.99	-
	ОРСОМ9	-6.192	14.208	0.007	0.87	-
	OPCOM10	1.022	15.928	0.003	1.24	-
Slovenia	ОРСОМ3	-9.109	14.951	0.005	0.91	-
CAPI	OPCOM4	-4.702	5.825	0.213	1.1	-
	OPCOM5	-10.789	5.324	0.256	0.83	-
	OPCOM8	-8.637	14.947	0.005	0.89	-
	ОРСОМ9	-5.509	22.011	<0.001	1	-
i 1, 1,	OPCOM10	-2.679	5.617	0.230	1.19	-

i complete data

No response dependency and unordered thresholds were observed for HLS₁₉-COM-Q6.

Table D2. HLS₁₉-NAV single item statistics

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
Austria	OPNHL1	1.438	0.699	0.951	1.04	-
	OPNHL2	-3.111	4.67	0.323	0.95	-
						agecat1,
	OPNHL3	3.355	7.469	0.113	1.11	agecat2, employment
	OPNHL4	-2.634	2.824	0.588	0.96	-
	OPNHL5	-5.544	13.339	0.010	0.89	-
	OPNHL6	-2.413	1.477	0.831	0.97	-
	OPNHL7	-2.119	2.221	0.695	0.96	education
	OPNHL8	-2.535	3.229	0.520	0.96	-
						agedico, agecat1*,
	OPNHL9	6.008	36.788	<0.001*	1.24	agecat2*, employment*
	OPNHL10	-5.158	10.881	0.028	0.88	-
	OPNHL11	-1.749	0.883	0.927	0.98	-
	OPNHL12	1.831	4.538	0.338	1.09	-
Austria	OPNHL1	-0.548	2.849	0.584	1.00	
CAWI	OPNHL2	-2.692	8.952	0.062	0.93	-
	OPNHL3	0.809	0.735	0.947	1.06	agedico*
	OPNHL4	-0.690	5.128	0.274	0.98	-

^{*}significant when sample size = 360

^asample size available for Rasch analysis (excluding extreme scorers) when sample size is less than 1000

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
	OPNHL5	-4.186	16.296	0.003	0.86	-
	OPNHL6	-2.180	2.560	0.634	0.96	-
	OPNHL7	-0.711	3.730	0.444	1.01	-
	OPNHL8	-0.510	2.037	0.729	1.01	agedico
	OPNHL9	4.381	45.925	<0.001*	1.30	gender*, agedico
	OPNHL10	-4.549	20.913	<0.001	0.83	-
	OPNHL11	0.059	3.503	0.478	1.03	-
	OPNHL12	3.187	10.335	0.035	1.17	-
Belgium	OPNHL1	-0.814	7.042	0.134	0.99	_
Deigium	OPNHL2	-0.585	8.495	0.134	1.01	_
	OPNHL3	2.195	10.005	0.040	1.15	agedico, agecat1, agecat2, employment*
	OPNHL4	-3.166	11.127	0.025	0.91	-
	OPNHL5	-4.285	13.475	0.009	0.87	-
	OPNHL6	-0.973	2.585	0.630	1.03	-
	OPNHL7	-2.007	4.300	0.367	0.96	agedico, agecat2
	OPNHL8	-2.749	6.961	0.138	0.89	agedico, agecat2
	OPNHL9	4.387	64.875	<0.001*	1.39	-
	OPNHL10	-3.141	8.836	0.065	0.88	-
	OPNHL11	-0.946	2.247	0.690	0.99	-
	OPNHL12	0.662	5.624	0.229	1.08	pay bills*
Czechia	OPNHL1	-1.962	3.883	0.422	0.99	-
CAWI	OPNHL2	-2.653	2.387	0.665	0.94	-
	OPNHL3	-0.206	3.580	0.466	1.07	-
	OPNHL4	-1.33	7.314	0.120	1.00	-
	OPNHL5	-4.23	8.569	0.073	0.90	-
	OPNHL6	-1.529	1.905	0.753	1.00	health#
	OPNHL7	-0.837	4.046	0.400	1.05	gender*, agedico*, agecat2
	OPNHL8	-3.163	4.620	0.329	0.92	-
	OPNHL9	-2.817	9.393	0.052	0.92	-
	OPNHL10	-4.711	14.941	0.005	0.86	-
	OPNHL11	-2.462	2.947	0.567	0.96	-
	OPNHL12	8.143	40.942	<0.001*	1.35	agedico, agecat2
France	OPNHL1	-0.449	5.691	0.223	1.05	-
	OPNHL2	2.95	30.163	<0.001*	1.21	agedico, agecat, agecat2
	OPNHL3	-0.613	4.514	0.341	1.07	agedico*, agecat1 agecat2*, employment
	OPNHL4	-3.251	14.361	0.006	0.95	-
	OPNHL5	-5.057	5.574	0.233	0.91	-
	OPNHL6	-6.192	7.609	0.107	0.89	-

Country	Item	Fit.res.	Chi sq	Chi sq p	Infit	DIF
			n=1080		MNSQ	n=1080
						agedico*, agecat1*,
	OPNHL7	-4.327	2.390	0.664	0.95	agecat2*
	OPNHL8	-6.744	16.954	0.002	0.84	agedico*, agecat2*
	OPNHL9	8.595	133.836	<0.001*	1.54	gender
	OPNHL10	-6.894	13.873	0.008	0.84	-
	OPNHL11	-4.236	3.309	0.508	0.94	-
	OPNHL12	-2.100	9.500	0.050	1.00	-
Germany	OPNHL1	-0.817	4.704	0.319	0.97	-
	OPNHL2	-1.025	4.597	0.331	0.96	-
	OPNHL3	3.396	12.258	0.016	1.13	-
	OPNHL4	-2.877	12.326	0.015	0.91	-
	OPNHL5	-4.17	10.622	0.031	0.89	-
	OPNHL6	2.18	16.195	0.003	1.10	education
	OPNHL7	-2.201	3.496	0.479	0.98	-
	OPNHL8	-0.684	2.859	0.582	1.02	-
	OPNHL9	1.876	9.821	0.044	1.10	-
	OPNHL10	-5.575	22.911	<0.001*	0.85	-
	OPNHL11	-0.823	0.303	0.990	1.00	-
	OPNHL12	3.099	10.659	0.031	1.13	-
Portugal	OPNHL1	-3.567	0.31	0.989	1.05	-
	OPNHL2	-3.32	21.241	<0.001	1.02	education
	OPNHL3	1.678	15.457	0.004	1.2	-
	OPNHL4	2 605	20.25	<0.001*	1.05	agecat1#, pay bills, employment#
	OPNHL5	-2.695 -4.84	28.25	0.730	0.96	employment
						- nov hills*
	OPNHL6 OPNHL7	-5.247	11.959 20.112	0.018	0.96	pay bills*
		-6.114		0.001 <0.001*	0.86	agedico, agecat1
	OPNHL8 OPNHL9	-5.982 -3.65	28.813 33.106	<0.001*	0.84 1.09	pay bills
	OPNHL10	-3.41	9.209	0.056	0.97	pay bills
	OPNHL11	-4.267		0.036		-
			10.961		0.99	-
	OPNHL12	-3.443	2.828	0.587	1.03	-
Slovenia	OPNHL1	-1.746	2.318	0.677	1.05	_
CAPI	OPNHL2	-3.597	10.094	0.077	0.95	_
₩ 711 1	OPNHL3	-1.761	4.526	0.340	1.03	_
	OPNHL4	2.183	33.614	<0.001*	1.17	-
	OPNHL5	-7.081	11.787	0.019	0.87	_
	OPNHL6	-3.536	2.433	0.657	1	_
	OPNHL7	-6.574	7.148	0.037	0.87	-
		3.0.1				
		-3.315	15.39	0.004	0.96	-
	OPNHL8 OPNHL9	-3.315 -3.671	15.39 28.511	0.004 <0.001*	0.96 1.02	-

Country	Item	Fit.res.	Chi sq n=1080	Chi sq p	Infit MNSQ	DIF n=1080
	OPNHL11	-3.332	3.028	0.553	1.01	-
	OPNHL12	2.316	26.632	<0.001*	1.21	-
Slovenia	OPNHL1	-1.66	17.662	0.001	1	-
CAWI	OPNHL2	-2.834	14.727	0.005	0.96	-
	OPNHL3	-2.553	1.626	0.804	0.96	-
	OPNHL4	-3.101	5.204	0.267	0.95	-
	OPNHL5	-5.688	10.606	0.031	0.86	-
	OPNHL6	-3.364	2.433	0.657	0.95	-
	OPNHL7	-4.145	8.528	0.074	0.93	-
	OPNHL8	-2.724	21.827	<0.001	0.94	-
	OPNHL9	-1.502	32.352	<0.001*	1.07	-
	OPNHL10	-5.472	14.242	0.007	0.87	-
	OPNHL11	0.332	2.027	0.731	1.1	-
	OPNHL12	9.338	75.017	<0.001*	1.44	gender
Switzerland	OPNHL1	-1.502	3.269	0.514	1.01	-
CAWI	OPNHL2	-1.534	10.058	0.040	1.00	-
	OPNHL3	1.420	6.818	0.146	1.11	agedico*, agecat1*, agecat2*, employment*
	OPNHL4	-4.599	8.145	0.086	0.92	-
	OPNHL5	-6.989	17.925	0.001	0.86	-
	OPNHL6	-4.693	2.181	0.702	0.94	-
	OPNHL7	-0.441	3.028	0.553	1.06	education*, pay bills*
	OPNHL8	-2.371	3.511	0.476	0.98	agedico, education, pay bills
	OPNHL9	2.711	42.022	<0.001*	1.22	gender, agedico, agecat2
	OPNHL10	-6.54	11.014	0.026	0.86	-
	OPNHL11	-3.001	1.021	0.907	0.96	-
	OPNHL12	0.180	2.453	0.653	1.07	-

[#] non-uniform DIF

Not reported in table: Response dependency was observed between items OPNHL7 and OPNHL8 in the Belgian (r = .37), Portuguese (r = .43) and Swiss (r = .38) data.

Table E2. HLS₁₉-VAC single item statistics

Country	Item	Fit.res.	Chi sq n=360	Chi sq p	Infit MNSQ	DIF n=1000 ^a
Austria	19	-3.105	3.888	.421	0.95	-
CATI	22	-6.739	9.335	.053	0.87	-
	26	-6.364	6.742	.150	0.88	-
	29	8.827	28.200	<.001*	1.33	-
Austria	19	-3.411	1.745	.783	0.71	-

^{*}significant when sample size = 720

Country	Item	Fit.res.	Chi sq n=360	Chi sq p	Infit MNSQ	DIF n=1000°
CAWI	22	-7.286	6.481	.166	0.60	-
	26	-7.890	5.690	.224	0.52	-
	29	1.831	12.582	.014	0.75	-
Belgium	19	-1.280	6.747	.150	0.98	agedico ^a (non-unif.)
n=868	22	-4.893	3.585	.465	0.89	-
	26	-4.659	8.598	.072	0.84	-
	29	4.161	12.944	.012	1.37	agecat1 ^a
Bulgaria	19	2.349	5.663	.226	1.17	_
CAPI	22	-1.424	4.720	.317	0.91	agecat1 ^a
n=379	26	-2.137	1.924	.027	0.85	edudico ^a
11-373	29	.739	4.754	.313	1.06	-
		.733	7.754	.515	1.00	
Bulgaria	19	5.261	43.893	<.001*	1.26	agecat1 (non-unif.) ^a , health ^a
CAWI	22	-2.418	18.582	.001	0.88	-
n=442	26	-2.200	17.234	.002	0.88	employment ^a
	29	.099	5.360	.252	1.01	-
			,			·
Czechia	19	-1.497	1.763	.623	0.96	agecat1 ^a
CAWI	22	-1.276	1.337	.720	0.98	-
n=977	26	-4.166	9.856	.020	0.84	-
	29	3.055	5.306	.151	1.23	employment, billsdico, soclevel
Czechia	19	-1.911	2.325	.676	1.01	agecat1 ^a , agedico ^a , agecat2 ^a , employment ^a
CATI	22	-3.621	13.105	.011	0.81	agecat1 ^a , billsdico ^a
n=471	26	-2.386	1.083	.039	0.89	-
	29	2.142	14.400	.006	1.29	agedico ^a , agecat2 ^a , edudico ^a , billsdico ^a , health ^a
	I	, ·				
Germany	19	.120	.707	.951	0.99	edudico
	22	-4.164	4.932	.294	0.90	agedico, agecat1, agecat2
	26	-4.398	1.894	.028	0.88	gender
	20	7.644	9 209	001	1.25	agedico, agecat1, agecat2, edudico,
	29	7.644	8.298	.081	1.25	employment
						soclevel (non-unif.),
Hungary	19	-2.043	3.683	.298	1.07	health
- 01	22	-5.346	3.264	.353	0.89	-
	26	-5.534	6.199	.102	0.91	edudico ^a (non-unif.)
	20	3.334	0.133	.102	0.51	soclevel (non-unif.) ^a ,
	29	136	3.859	.277	1.20	billsdico

Country	Item	Fit.res.	Chi sq n=360	Chi sq p	Infit MNSQ		DIF n=1000°
Ireland					Set A	Set B	
N > 3000	19	1.931	1.865	.761	0.99	1.00	employment
	22	-2.382	8.155	.086	0.97	0.96	-
	26	-1.494	8.910	.063	0.95	0.93	gender
							agedico, agecat1,
	29	6.290	3.953	.412	1.20	1.20	agecat2, employment
	T	T					
Italy	19	-2.899	9.465	.050	0.	98	billsdico(non-unif.) ^a
CATI	22	-3.351	1.893	.755	0.	99	-
·- F30	26	2.476	F 603	420		00	agecat2 ^a , employment ^a ,
n=529	26	-2.176	5.682	.128	0.		soclevel (non-unif.) ^a
	29	-1.821	6.858	.077	1.	10	-
la alu	10	274	2 502	475		02	
Italy	19	.271	2.503	.475		03	-
CAWI	22	-4.586	5.136	.162	0.		agecat1
	26	-2.509	1.764	.623	0.		Gender
	29	.502	1.282	.733	1.	06	agecat1
	T				_		
Norway	19	1.671	3.087	.543	1.03		-
	22	-3.580	13.936	.008	0.97		agedico ^a , agecat1 ^a , agecat2 ^a , employment ^a
	22	-3.380	13.330	.006			gender (non-unif.),
	26	-4.694	12.754	.013	0.	88	agecat1, edudico
							gender (non-unif.),
							agedico ^a , agecat1 ^a ,
	29	6.925	6.376	.173	1.	18	agecat2 ^a , employment ^a
	I	T					I 10
Portugal	19	-5.724	12.816	.005	٥	94	agedico, agecat1, agecat2, employment ^a
rortugai	15	-3.724	12.010	.003	0.	J 4	agedico ^a , agecat1 ^a (non-
							unif.), agecat2 ^a ,
							edudico, employmenta,
	22	-7.068	3.601	.463	0.	88	soclevela
	26	-7.133	31.660	<.001*	0.	90	-
				<.001*			agedico ^a , agecat1 ^a ,
							agecat2 ^a , edudico, employment ^a , billsdico,
	29	514	26.117		1.	21	soclevel ^a , health
		.511				_	1 220.010.) (100.01)
Slovenia	19	1.580	2.592	.628	1	05	-
CAWI	22	-2.261	8.115	.087		93	billsdico
37.171	26	-3.211	11.500	.021		85	-
	29	4.664	7.103	.131		20	health
		7.004	7.103	.131			Health
							agecat1, agecat2 ^a ,
Slovenia	19	-3.670	1.600	.659	0.	96	employment
CAPI	22	-5.148	6.439	.092	0.	92	edudico

Country	Item	Fit.res.	Chi sq n=360	Chi sq p	Infit MNSQ	DIF n=1000°
	26	-6.328	3.158	.368	0.89	-
						agecat1, agecat2,
	29	2.529	9.493	.023	1.24	edudico, employment

^{*}significant when sample size = 240, aowing to few items we used amend sample size = 1000 for DIF-analysis (or actual sample size when less than 1000), aDIF significant even for sample size = 500